Refined Hermite–Hadamard Inequalities and Some Norm Inequalities

نویسندگان

چکیده

It is well known that the Hermite–Hadamard inequality (called HH inequality) refines definition of convexity function f(x) defined on [a,b] by using integral from a to b. There are many generalizations or refinements inequality. Furthermore has applications several fields mathematics, including numerical analysis, functional and operator Recently, we gave types refined inequalities obtained which were satisfied weighted logarithmic means. In this article, give an N-variable apply some norm under certain conditions. As applications, obtain means symmetry. Finally, detailed values.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cartesian decomposition of matrices and some norm inequalities

Let ‎X be an ‎‎n-‎‎‎‎‎‎square complex matrix with the ‎Cartesian decomposition ‎‎X = A + i ‎B‎‎‎‎‎, ‎where ‎‎A ‎and ‎‎B ‎are ‎‎‎n ‎‎times n‎ ‎Hermitian ‎matrices. ‎It ‎is ‎known ‎that ‎‎$Vert X Vert_p^2 ‎leq 2(Vert A Vert_p^2 + Vert B Vert_p^2)‎‎‎$, ‎where ‎‎$‎p ‎‎geq 2‎$‎ ‎and ‎‎$‎‎Vert . Vert_p$ ‎is ‎the ‎Schatten ‎‎‎‎p-norm.‎ ‎‎ ‎‎In this paper‎, this inequality and some of its improvements ...

متن کامل

On some sharp weighted norm inequalities

Given a weight , we consider the space ML which coincides with L p when ∈ Ap . Sharp weighted norm inequalities on ML for the Calderón–Zygmund and Littlewood–Paley operators are obtained in terms of the Ap characteristic of for any 1<p<∞. © 2005 Elsevier Inc. All rights reserved.

متن کامل

cartesian decomposition of matrices and some norm inequalities

let ‎x be an ‎‎n-‎‎‎‎‎‎square complex matrix with the ‎cartesian decomposition ‎‎x = a + i ‎b‎‎‎‎‎, ‎where ‎‎a ‎and ‎‎b ‎are ‎‎‎n ‎‎times n‎ ‎hermitian ‎matrices. ‎it ‎is ‎known ‎that ‎‎$vert x vert_p^2 ‎leq 2(vert a vert_p^2 + vert b vert_p^2)‎‎‎$, ‎where ‎‎$‎p ‎‎geq 2‎$‎ ‎and ‎‎$‎‎vert . vert_p$ ‎is ‎the ‎schatten ‎‎‎‎p-norm.‎ ‎‎ ‎‎in this paper‎, this inequality and some of its improvements ...

متن کامل

Refined Convex Sobolev Inequalities

This paper is devoted to refinements of convex Sobolev inequalities in the case of power law relative entropies: a nonlinear entropy–entropy production relation improves the known inequalities of this type. The corresponding generalized Poincaré type inequalities with weights are derived. Optimal constants are compared to the usual Poincaré constant.

متن کامل

Weighted Norm Inequalities

Introduction In the rst part of the paper we study integral operators of the form (1) Kf(x) = v(x) x Z 0 k(x; y)u(y)f(y) dy; x > 0; where the real weight functions v(t) and u(t) are locally integrable and the kernel k(x; y) 0 satisses the following condition: there exists a constant D 1 such that Standard examples of a kernel k(x; y) 0 satisfying (2) are (i) k(x; y) = (x ? y) , 0 (ii) k(x; y) =...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2022

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym14122522